
'C· · .. ;Ei·',·· ·····~· H' A' '-' PI' .·:I .i , ...
. ",:

DIGITAL AAITHMETIC

In this chapter you will study digital arithmetic. Digital 6.0 INTRODUCTION
arithmetic is ,used in ,the , internal calculations ~rformed in
many modem computer systems. You will learn about
arithmetic . using biIlary" hexadecimal, and . BCD numbers.
Circuits to perform digital arithmetic ,will be constructed and
their operation analyzed.

Upon completion of thischapt~ you should be able to: ' 	 6.1 ;OBJECTIVES

. • Understand binary addition with signed and

unsigned numbers.

. ; . ' .~

• Use 	 the . ,two's . complement form of binary nWflbers

to.,perf~rm aritl)metic .

• Multiply and divide binary numbers.

• Perform arithmetic operations on BCD and hexadecimal

numbers.

• ' Implement digital arithmetic circuits.

105

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

~: r ' . ' ,

,; .
. : ...

. ", ' .
. :;

6.2.0 Binary Addition

FIGURE 6-1 . Rules of
Binary Addition.

6.2.1 Signed
Numbers

FIGURE 6-2. Example
of Signed Numbers.

Until this chapter, the numbers you have studied have been

positive integers or fractions. In fact when we say that an N bit

binary number can have a count of 2N - 1 we are implying that

such a number is positive and uses all of the bits to express

~grlHii4~: 'Reauze~' ~~ ' !~COl\venti~:n is arbitrary and that

Some of ;thebitS can be used to -indicate qualities other than

magnitude.

, ,,: " ~ ' .
. ;

The positive binary integers used till now can be added a

bit at a time by following a few simple rules which are shown in

Figure 6-1.

0+0=0 1+0=0+1=1

apd 1 +1 =0 with a carry of 1 .

. , . ,

These rules are straight forward. Notice that the only '----'
operation resulting in a nonzero carry is the addition of two
ories'. These rules are useful for adding any binary' digits and do
not apply only when used with positive binary integers.

While the n~beis- uSed to this ' pomt are fine ' for
counting, they have not allowed ' representation .of negative
quantity~ Since numbers can be negative or positive, a single bit
can be used ' to inclieate; the sign ':of a 'number while the
remaining bits are used to indicate the magriitude of the
number. The convention normally adopted is to have the MSB

.used Jor tile sign 'bit and to have' a zero in the sign bit indicate a
positive number. This concept is illustrated in Figure'6-2.

01 01 0111 = 87 11010111 =-87

The rules used for addition will still work with these
numbers. Some additional rules are needed to handle the sign '-.-
bits. These rules are summarized below.

106

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

"-- A. To add numbers with like "signs_ add the magnitudes and
use' the common sign in the s~gn bit.
B. To. add nmnberswith unli.lce signs find the . diff~renc~ in
magnitude and . use thesjgn of the number with thegz:~~test '
magnitude.

;

Subtraction , can alsqbe accomplished with signed_binary
numbers in ' the ,same. . as " . . .'.1.. ' decimal .,'. mannerisdonewith',. ,the

numbers. To subtract we merely change the sign of the
subtrahend then add the sl,lbtrahend to the minuend following
the rules ·of binary ·addition of signed numbers . . SuptractiQn C¥.l
also be carried out directly as with · decin1al numbers. The rules
for binary subtraction are shown in Figure 6-3.

1-1=01-0=1 0-0=0

0- 1 =1 WITH A BORROW OF 2 FROM TIlE NEXT HIGHER
BIT

Notice that the borrow in binary is a 2 instead of a ten as
you are familiar with when using decimal numbers.

A special form ' of writing numbers known as
complement notation is used widely for binary arithmetic. This
usage has become common because. the complement form of a
binary number is easily represented and manipulated by d~gital
machines. 'The fonnula for the radix complement of a number
is: (Rn) - N where R is the radix, n is the number of digits in
the word representing the number and N is the number to be
complemented. The radix-minus-1 complement is formed by
subtracting one from the radix complement. Since you are
concerned with binary numbers for use with computers, you
will use the two's complement for the radix complement and
the One's' complemen't ' as the radix-minus-1 complement.
ExampleS of these complements ;are ,shown in Figure 6-4.

NUMBER: 01010101 11011011

ONE'S COMPLEMENT: 00101010 10100100

TWO'S COMPLEMENT~ 00101011 10100101

FIGURE 6-3. Rules
tor Binary Subtraction.

6.2.2 Complement
Notation

FIGURE 6-4. Examples
of Complement Notation.

107

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

FIGURE 6-5. Subtraction
Using Two's Complement

Notation.

6.2.3 Binary
Multiplication

The left number is decimal :r 85 and the right number is
decimal - 91. Notice that the left most bits, the sign bits, are not
changed by either of the complement operations. Also note that
the one's complement is the complement of the bits of the
magnitude with the sign bit retained.

This means that. the hardware to form the one's
complement is simply . an inverter for each of the magnitude
bits. The two's complement can be formed by adding one to the
one's complement. This can be done using an EXOR gate and
some additional circuitry. Subtraction · of binary numbers is
frequently performed by adding the two's complement of the
subtrahend to the minuend. This process is illustrated in Figure
6-5.

DECIMAL BINARY

14 00001110

-5 + 11111011

9 100001001

Notice that the result of the subtraction has an overflow
or carry bit. The result also will be in a signed magnitude format
with negative numbers represented as two's complements. The
carry bit is not used in this example hence it is discarded.

The process for multiplying binary numbers is similar to
the process used to multiply decimal numbers. Multiplication is
accomplished by successive addition. For example 6 x 3 =6 + 6 +

6. When multiple digit decimal numbers are multiplied, the
digits of the multiplier are used one at a time to operate on the
multiplicand. The partial products, which are the result of these
operations, are added to form the final product. Each partial
product is shifted one place to the left as the multiplicand digits

108

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

are used from LSB to MSB. . This has the effect,:ot multiplying
each partial product by ten. A 'similar set of rules .is used in
binary multiplication. Binary multiplication is simpler . since
only ' two restiIts can be ' obtained. . ,The rules . for binary
multiplication are:

A. When a binary number is multiplied by one the result is the,
original number or multiplicand.

B. When a binary number is multiplied by zero the result is
zero;

An example of multiplying a multi-digit ' binary number is
shown in Figure ~6.

1101 MULTIPLICAND

X 101 MULTIPLIER

1101 PARTIAL PRODUCTS,
0000

+ 1101

1000001 	 FINAL PRODUCT

This method of multiplying will give correct answers and
is very similar to the one you use to multiply decimal numbers.
This is not the only way to perfonn binary multiplication nor is
it the most hardware efficient. The same result can be obtained
by shifting the previous result to the right instead of shifting
each successive partial product to the left. This method is
shown in Figure ~7.

1101 	 MULTIPLICAND

X 101 MULTIPLIER

1101 	 INTERMEDIATE RESULTS
, 00000

001101 	 NOTE: ONLY THE LAST
lWO TERMS ARE SUMMED!!

1000001 FINAL PRODUCT

FIGURE 6-6. Example
of Multi-Digit Binary
Multiplication.

FIGURE 6-7. Altemate
Method for Multiplying
Binary Numbers.

109

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

6.2.4 Binary Division

FIGURE 6·8. Alternate
Method for Division.

· .Thism:ethocL oL.:multiplication will also give correct '
reswts. Notic-e · that for a ·zero bit in -the . multiplier .the
intennediaterestilt is 7shifted right one.position. For a one bit in
the ··multiplier the intermediate'- result .· is shifted right one bit
then the multiplicand is added to the result.

This method of multiplying is more hardware efficient in
that it Can be 'iInplementea using one fewer 'registers than would
be required to implement the method shown in Figure 6-6:

Binary division can be accomplished by successive binary
subtraction. This method will give accurate results but is slow
and cumbersome for.division of large numbers. The number of
steps required to perform the division can be reduced by a
process called shifting. An exall1ple .of this process applied to
decimal numbers is shown in Figure 6-8.

QUOTIENT 1500/5

We know that the farthest that 5 can be shifted and still be
divided into 1500 \\ith al1.. integ~r result is two places, so 500
will be used for this·process.

1500

.. '500 100 .. PARTIAL QUOTIENT

1000

-500

500 100 PARTIAL QUOTIENT

- 500

o 100 PARTIAL QUOTIENT

300 FINAL QUOTIENT

110

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

This same principle can be applied to binary division. This
method is frequently used in computer arithmetic. It can be
implemented using subtraction circuitry in conjunction with
some logic to detennine the size of th~ ,number to ~ subtracted
from the dividend. An example of thiS method, known as the
restoring method, applied to binary numbers is shoWn in Figure
6-9.

The quotient is 1000001 /1101

1000001 can at least be divided by 110100 so,
-110100

1101 add 100 to quotient
-1101 use 1101 for division

o 	 add 1 to ,complete quotient
quotient -= 101

You could use a system . of addinon and subtraction using
fifteens and sixteens complement notation ~ for ,hexadeci.I:r}a1

"'---- arithmetic. However, with the large ,. number of . binary
arithmetic devices available it is easier to convert from
hexadecimal to binary for performing arithmetic. When this is
done, all answers will have to be converted back to hexadecimal
after computation . .

sCOaddition is ' frequently used in systems where the
results are displayed as" decimal numbers. Calculators are one
example of this type of system. You have already learned about
BCD notation. Some interesting things happen with BCD
arithmetic because of the 6 unused states in a BCD digit. Figure
6-10 illustrates BCD addition problems.

DECIMAL BcD

3 0011
+4 + 0100

0111 CORRECT RESULT

FIGURE 6-9. Binary
Division by the Restoring
Method.

6.2.5 Hexadecimal
Arithmetic

6.2.6 BCD Addition

FIGURE 6-10. BCD
Addition Examples.

l11

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

FIGURE 6-10.
Continued.

6.2.7 The Half-adder

FIGURE 6-11 . HaH-Adder.

6 ono

+8 +1()(j()

14 1110 	 INCORRECT RESULT,
NO CARRY

9 1001

+8 +1000

17 00010001 	 WRONG RESULT,
CARRY GENERATED

This problem occurs because the carry for the decimal
system occurs for sums greater than nine while the carry in the
BCD system OCfUTS for numbers greater than 15. To correct this,
a six must be added to all sums greater than nine. to, do this a
ma'crune ,woUld need, to be , able to rec9~e results of sums
wlUcilare greater than nine and add six to .tl1ose sums~ Results
of sUms less than nine are correct in BCD aritll.Metic. '

i t ' ."I

Until ' now you have concenp-ated , on "the mechanics of
binary related arithmetic and we have only hinted at how to use
digital circuits to perform arithmetic operations. The next few
sections will con~entrate on implementing arithmetic circuits.

Your study. of arithmetic circuits will begin with the .binary
half-addet.Theschematic :iUld truth table fQr ,the half-adder are
ShOWIl in Figure 6-11_

Schematic
'A

S

. 	 'Sum
CarTy

Block Diagram Truth Table

ABsum
S Carry

A B S C
0 0 0 0
0 1 , 0
1 0 1 0
1 1 0 1

,,.,

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Notice that this circuit has · two inputs and. two ·outputs.
'- The . EXORgat~ performs ' ;'the addition while the. ANP,gate

detects when both inputs are ONE 'and ,forms the carry o:!Jtput.
This circuit is called a half~adder because it lacks the ability to
accept a carry input from aprevi~ addition.

The full-adder has t!veeinptJ,ts and two outputs. The
inputs are the two bits .. tC) ,.ke il?cie? and a carry input from a
previous addition. .. The full-adder. has . the sum and carry
outputs. The schematic and truth table fbr the full-adder are
shown in Figure 6-12.

Schematic

Cn-1

B

~~~ 

Truth Table 

Block Diagram 

enn1..... Sum 
B . 

. A ' Cn 
. . 

'-iA_,,,,, . B Cn-1 S Cn 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 

. 1 0 1 0 1 
1 ,1 0 0 1 
1 1 1 1 1 

A parallel binary adder will perfomFtheaddition operation 
on multiple bit· biMry nwribers. . The circuit which performs 
the function in the TIL ,logic fauillyis , fue 74LS83. The circuit 
has some featuresthatrequire :~$ion." 

'The 74LS83 is a four-bitbirulry adder with fast carry. The 
fast · carry is .'made~~possible by circuitry which is called a "look 
ahead" carrY circUit. This Circuitry 'Samples the output of each 
individual adder thus saving the time required for a carry to 
ripple through·each adder stage. The 74LS83 also performs math 
in the true logical sense. This means that outputs will all be 
true. Forone~s -.complement arithmetic · this means that the end 
around carry can be directly . impleP'\ent-ed. An End Around 

6.2.8 Full-adder 

FIGURE 6-12. Full-Adder. 

6.2.9 Parallel Binary 
Adder 

113 

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight



FIGURE 6-13. Parallel 
Adder IC. 

6.2.10 BCD Adder 

FIGURE 6-14. BCD 
Adder Circuit. 

, Carry' orEACis needed when , the result of the addition of two '---
numbers with unlike signs is . positive (>0). The ,block diagram 
for the 14l.S83 is shown. in Figure 6-.13. 

Augend or Addend or 

Minuend Subtrahe'rid 


..------., ,~-----
63 B1 A3 A1 

84' 62 ' A4' A2 

Cout 

, 

" 

7483 

, ¥ 
Sur'nlDifference Outputs 

A BCD adder can' be formed from two four-bit adders and 
some additional circuitry. ' The schematic for a BCD adder is 
shown in Figure 6-.14: 

A4 

"I4 ' I1 

A1 Cin 

Primary 
Adder 

Correction 
Adder 

, A1Cin 

Sum 

fNotice that the first adder performs 'the basic addition, 
while the secorid adder Will add six to outputs that are nine or -
greater. The seCond adder 'is controlled by 'the AND and OR 

114 

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight



gates which detect when the output of the main adder is nine or 
greater. 

A reasonable variety of IC multipliers are available in the 
TIL logic family. A dedicated multiplier is generally used only 
where speed is very important. An example of this type of 
circuit is the 74LS261, a two-bit by four-bit binary multiplier, 
capable of producing a five-bit output in 26 nS. Where speed is 
less of a consideration all Arithmetic Logic' Unit or ALU is 
frequently used. 

These devices can be used to perform the multiplication 
function and other arithmetic and logic functions. The 74LS181 
is an example of an ALU.It performs aritruneticand' logic 
operations on two four-bit binary numbers. 

6.2.11 Binary 
Multipliers 

In this chapter you have learned about binary arithmetic and the 
circuits required to perform binary arithmetic. You have learned 
about the half- and full-adders, binary multipliers, BCD adders, 
and ALUs as means of performing binary arithmetic. , These 
items form the backbone of digital arithmetic computation. 

6.3 SUMMARY 


1. What is the sum of 101 and 011 ? 6.4 REVIEW 
QUESTIONS 

2. Compute the difference between 011 and 010. 

3. What is meant'by a half-,idd~t? 

115 

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight



4. Divide 111001 .by 10010. 

5. MultiplyJ01 by llO, . 

6. ConvertFF hexadecimal to binary. 

7. Convert FF hexadecimal to decimal. 

.. 8; .What is allALU ? 

I . ~. : 

9. . Write' -120 ' in the two's complement binary fonnat. 

10. Write -120 in the one's complement binary fonnat. 

11. What is the range of ' signed number in art eight-bit 
register using two's complement notation? 

12. Convert 120 to BCD. 

116 


