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DIGITAL AAITHMETIC 

In this chapter you will study digital arithmetic. Digital 6.0 INTRODUCTION 
arithmetic is ,used in ,the , internal calculations ~rformed in 
many modem computer systems. You will learn about 
arithmetic . using biIlary" hexadecimal, and . BCD numbers. 
Circuits to perform digital arithmetic ,will be constructed and 
their operation analyzed. 

Upon completion of thischapt~ you should be able to: ' 	 6.1 ;OBJECTIVES 

. • Understand binary addition with signed and 

unsigned numbers. 


. ; . ' .~ 

• Use 	 the . ,two's . complement form of binary nWflbers 

to.,perf~rm aritl)metic . 


• Multiply and divide binary numbers. 

• Perform arithmetic operations on BCD and hexadecimal 

numbers. 


• ' Implement digital arithmetic circuits. 
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6.2.0 Binary Addition 

FIGURE 6-1 . Rules of 
Binary Addition. 

6.2.1 Signed 
Numbers 

FIGURE 6-2. Example 
of Signed Numbers. 

Until this chapter, the numbers you have studied have been 

positive integers or fractions. In fact when we say that an N bit 

binary number can have a count of 2N - 1 we are implying that 

such a number is positive and uses all of the bits to express 

~grlHii4~: 'Reauze~' ~~ ' !~COl\venti~:n is arbitrary and that 

Some of ;thebitS can be used to -indicate qualities other than 

magnitude. 

, ,,: " ~ ' . 
. ; 

The positive binary integers used till now can be added a 

bit at a time by following a few simple rules which are shown in 

Figure 6-1. 


0+0=0 1+0=0+1=1 

apd 1 +1 =0 with a carry of 1 . 

. , . , 

These rules are straight forward. Notice that the only '----' 
operation resulting in a nonzero carry is the addition of two 
ories'. These rules are useful for adding any binary' digits and do 
not apply only when used with positive binary integers. 

While the n~beis- uSed to this ' pomt are fine ' for 
counting, they have not allowed ' representation .of negative 
quantity~ Since numbers can be negative or positive, a single bit 
can be used ' to inclieate; the sign ':of a 'number while the 
remaining bits are used to indicate the magriitude of the 
number. The convention normally adopted is to have the MSB 

.used Jor tile sign 'bit and to have' a zero in the sign bit indicate a 
positive number. This concept is illustrated in Figure'6-2. 

01 01 0111 = 87 11010111 =-87 

The rules used for addition will still work with these 
numbers. Some additional rules are needed to handle the sign '-.-
bits. These rules are summarized below. 
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"-- A. To add numbers with like "signs_ add the magnitudes and 
use' the common sign in the s~gn bit. 
B. To. add nmnberswith unli.lce signs find the . diff~renc~ in 
magnitude and . use thesjgn of the number with thegz:~~test ' 
magnitude. 

; 

Subtraction , can alsqbe accomplished with signed_binary 
numbers in ' the ,same. . as " . . .'.1.. ' decimal .,'. manner .. . .isdonewith',. ,the ... .. 

numbers. To subtract we merely change the sign of the 
subtrahend then add the sl,lbtrahend to the minuend following 
the rules ·of binary ·addition of signed numbers . . SuptractiQn C¥.l 
also be carried out directly as with · decin1al numbers. The rules 
for binary subtraction are shown in Figure 6-3. 

1-1=01-0=1 0-0=0 

0- 1 =1 WITH A BORROW OF 2 FROM TIlE NEXT HIGHER 
BIT 

Notice that the borrow in binary is a 2 instead of a ten as 
you are familiar with when using decimal numbers. 

A special form ' of writing numbers known as 
complement notation is used widely for binary arithmetic. This 
usage has become common because. the complement form of a 
binary number is easily represented and manipulated by d~gital 
machines. 'The fonnula for the radix complement of a number 
is: (Rn) - N where R is the radix, n is the number of digits in 
the word representing the number and N is the number to be 
complemented. The radix-minus-1 complement is formed by 
subtracting one from the radix complement. Since you are 
concerned with binary numbers for use with computers, you 
will use the two's complement for the radix complement and 
the One's' complemen't ' as the radix-minus-1 complement. 
ExampleS of these complements ;are ,shown in Figure 6-4. 

NUMBER: 01010101 11011011 

ONE'S COMPLEMENT: 00101010 10100100 

TWO'S COMPLEMENT~ 00101011 10100101 

FIGURE 6-3. Rules 
tor Binary Subtraction. 

6.2.2 Complement 
Notation 

FIGURE 6-4. Examples 
of Complement Notation. 
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FIGURE 6-5. Subtraction 
Using Two's Complement 

Notation. 

6.2.3 Binary 
Multiplication 

The left number is decimal :r 85 and the right number is 
decimal - 91. Notice that the left most bits, the sign bits, are not 
changed by either of the complement operations. Also note that 
the one's complement is the complement of the bits of the 
magnitude with the sign bit retained. 

This means that. the hardware to form the one's 
complement is simply . an inverter for each of the magnitude 
bits. The two's complement can be formed by adding one to the 
one's complement. This can be done using an EXOR gate and 
some additional circuitry. Subtraction · of binary numbers is 
frequently performed by adding the two's complement of the 
subtrahend to the minuend. This process is illustrated in Figure 
6-5. 

DECIMAL BINARY 

14 00001110 

-5 + 11111011 

9 100001001 

Notice that the result of the subtraction has an overflow 
or carry bit. The result also will be in a signed magnitude format 
with negative numbers represented as two's complements. The 
carry bit is not used in this example hence it is discarded. 

The process for multiplying binary numbers is similar to 
the process used to multiply decimal numbers. Multiplication is 
accomplished by successive addition. For example 6 x 3 =6 + 6 + 

6. When multiple digit decimal numbers are multiplied, the 
digits of the multiplier are used one at a time to operate on the 
multiplicand. The partial products, which are the result of these 
operations, are added to form the final product. Each partial 
product is shifted one place to the left as the multiplicand digits 
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are used from LSB to MSB. . This has the effect,:ot multiplying 
each partial product by ten. A 'similar set of rules .is used in 
binary multiplication. Binary multiplication is simpler . since 
only ' two restiIts can be ' obtained. . ,The rules . for binary 
multiplication are: 

A. When a binary number is multiplied by one the result is the, 
original number or multiplicand. 

B. When a binary number is multiplied by zero the result is 
zero; 

An example of multiplying a multi-digit ' binary number is 
shown in Figure ~6. 

1101 MULTIPLICAND 

X 101 MULTIPLIER 

1101 PARTIAL PRODUCTS, 
0000 

+ 1101 

1000001 	 FINAL PRODUCT 

This method of multiplying will give correct answers and 
is very similar to the one you use to multiply decimal numbers. 
This is not the only way to perfonn binary multiplication nor is 
it the most hardware efficient. The same result can be obtained 
by shifting the previous result to the right instead of shifting 
each successive partial product to the left. This method is 
shown in Figure ~7. 

1101 	 MULTIPLICAND 

X 101 MULTIPLIER 

1101 	 INTERMEDIATE RESULTS 
, 00000 

001101 	 NOTE: ONLY THE LAST 
lWO TERMS ARE SUMMED!! 

1000001 FINAL PRODUCT 

FIGURE 6-6. Example 
of Multi-Digit Binary 
Multiplication. 

FIGURE 6-7. Altemate 
Method for Multiplying 
Binary Numbers. 
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6.2.4 Binary Division 

FIGURE 6·8. Alternate 
Method for Division. 

· .Thism:ethocL oL.:multiplication will also give correct '
reswts. Notic-e · that for a ·zero bit in -the . multiplier .the 
intennediaterestilt is 7shifted right one.position. For a one bit in 
the ··multiplier the intermediate'- result .· is shifted right one bit 
then the multiplicand is added to the result. 

This method of multiplying is more hardware efficient in 
that it Can be 'iInplementea using one fewer 'registers than would 
be required to implement the method shown in Figure 6-6: 

Binary division can be accomplished by successive binary 
subtraction. This method will give accurate results but is slow 
and cumbersome for.division of large numbers. The number of 
steps required to perform the division can be reduced by a 
process called shifting. An exall1ple .of this process applied to 
decimal numbers is shown in Figure 6-8. 

QUOTIENT 1500/5 

We know that the farthest that 5 can be shifted and still be 
divided into 1500 \\ith al1.. integ~r result is two places, so 500 
will be used for this·process. 

1500 

.. '500 100 .. PARTIAL QUOTIENT 

1000 

-500 

500 100 PARTIAL QUOTIENT 

- 500 

o 100 PARTIAL QUOTIENT 

300 FINAL QUOTIENT 
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This same principle can be applied to binary division. This 
method is frequently used in computer arithmetic. It can be 
implemented using subtraction circuitry in conjunction with 
some logic to detennine the size of th~ ,number to ~ subtracted 
from the dividend. An example of thiS method, known as the 
restoring method, applied to binary numbers is shoWn in Figure 
6-9. 

The quotient is 1000001 /1101 

1000001 can at least be divided by 110100 so, 
-110100 

1101 add 100 to quotient 
-1101 use 1101 for division 

o 	 add 1 to ,complete quotient 
quotient -= 101 

You could use a system . of addinon and subtraction using 
fifteens and sixteens complement notation ~ for ,hexadeci.I:r}a1 

"'---- arithmetic. However, with the large ,. number of . binary 
arithmetic devices available it is easier to convert from 
hexadecimal to binary for performing arithmetic. When this is 
done, all answers will have to be converted back to hexadecimal 
after computation . . 

sCOaddition is ' frequently used in systems where the 
results are displayed as" decimal numbers. Calculators are one 
example of this type of system. You have already learned about 
BCD notation. Some interesting things happen with BCD 
arithmetic because of the 6 unused states in a BCD digit. Figure 
6-10 illustrates BCD addition problems. 

DECIMAL BcD 

3 0011 
+4 + 0100 

0111 CORRECT RESULT 

FIGURE 6-9. Binary 
Division by the Restoring 
Method. 

6.2.5 Hexadecimal 
Arithmetic 

6.2.6 BCD Addition 

FIGURE 6-10. BCD 
Addition Examples. 
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FIGURE 6-10. 
Continued. 

6.2.7 The Half-adder 

FIGURE 6-11 . HaH-Adder. 

6 ono 

+8 +1()(j() 


14 1110 	 INCORRECT RESULT, 
NO CARRY 

9 1001 

+8 +1000 


17 00010001 	 WRONG RESULT, 
CARRY GENERATED 

This problem occurs because the carry for the decimal 
system occurs for sums greater than nine while the carry in the 
BCD system OCfUTS for numbers greater than 15. To correct this, 
a six must be added to all sums greater than nine. to, do this a 
ma'crune ,woUld need, to be , able to rec9~e results of sums 
wlUcilare greater than nine and add six to .tl1ose sums~ Results 
of sUms less than nine are correct in BCD aritll.Metic. ' 

i t ' ."I 

Until ' now you have concenp-ated , on "the mechanics of 
binary related arithmetic and we have only hinted at how to use 
digital circuits to perform arithmetic operations. The next few 
sections will con~entrate on implementing arithmetic circuits. 

Your study. of arithmetic circuits will begin with the .binary 
half-addet.Theschematic :iUld truth table fQr ,the half-adder are 
ShOWIl in Figure 6-11_ 

Schematic 
'A

S 

. 	 'Sum 
CarTy 

Block Diagram Truth Table 

ABsum 
S Carry 

A B S C 
0 0 0 0 
0 1 , 0 
1 0 1 0 
1 1 0 1 

,,., 
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Notice that this circuit has · two inputs and. two ·outputs. 
'- The . EXORgat~ performs ' ;'the addition while the. ANP,gate 

detects when both inputs are ONE 'and ,forms the carry o:!Jtput. 
This circuit is called a half~adder because it lacks the ability to 
accept a carry input from aprevi~ addition. 

The full-adder has t!veeinptJ,ts and two outputs. The 
inputs are the two bits .. tC) ,.ke il?cie? and a carry input from a 
previous addition. .. The full-adder. has . the sum and carry 
outputs. The schematic and truth table fbr the full-adder are 
shown in Figure 6-12. 

Schematic 

Cn-1 

B 

~~~ 

Truth Table 

Block Diagram 

enn1..... Sum 
B . 

. A ' Cn 
. . 

'-iA_,,,,, . B Cn-1 S Cn 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 

. 1 0 1 0 1 
1 ,1 0 0 1 
1 1 1 1 1 

A parallel binary adder will perfomFtheaddition operation 
on multiple bit· biMry nwribers. . The circuit which performs 
the function in the TIL ,logic fauillyis , fue 74LS83. The circuit 
has some featuresthatrequire :~$ion." 

'The 74LS83 is a four-bitbirulry adder with fast carry. The 
fast · carry is .'made~~possible by circuitry which is called a "look 
ahead" carrY circUit. This Circuitry 'Samples the output of each 
individual adder thus saving the time required for a carry to 
ripple through·each adder stage. The 74LS83 also performs math 
in the true logical sense. This means that outputs will all be 
true. Forone~s -.complement arithmetic · this means that the end 
around carry can be directly . impleP'\ent-ed. An End Around 

6.2.8 Full-adder 

FIGURE 6-12. Full-Adder. 

6.2.9 Parallel Binary 
Adder 
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FIGURE 6-13. Parallel 
Adder IC. 

6.2.10 BCD Adder 

FIGURE 6-14. BCD 
Adder Circuit. 

, Carry' orEACis needed when , the result of the addition of two '---
numbers with unlike signs is . positive (>0). The ,block diagram 
for the 14l.S83 is shown. in Figure 6-.13. 

Augend or Addend or 

Minuend Subtrahe'rid 


..------., ,~-----
63 B1 A3 A1 

84' 62 ' A4' A2 

Cout 

, 

" 

7483 

, ¥ 
Sur'nlDifference Outputs 

A BCD adder can' be formed from two four-bit adders and 
some additional circuitry. ' The schematic for a BCD adder is 
shown in Figure 6-.14: 

A4 

"I4 ' I1 

A1 Cin 

Primary 
Adder 

Correction 
Adder 

, A1Cin 

Sum 

fNotice that the first adder performs 'the basic addition, 
while the secorid adder Will add six to outputs that are nine or -
greater. The seCond adder 'is controlled by 'the AND and OR 
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gates which detect when the output of the main adder is nine or 
greater. 

A reasonable variety of IC multipliers are available in the 
TIL logic family. A dedicated multiplier is generally used only 
where speed is very important. An example of this type of 
circuit is the 74LS261, a two-bit by four-bit binary multiplier, 
capable of producing a five-bit output in 26 nS. Where speed is 
less of a consideration all Arithmetic Logic' Unit or ALU is 
frequently used. 

These devices can be used to perform the multiplication 
function and other arithmetic and logic functions. The 74LS181 
is an example of an ALU.It performs aritruneticand' logic 
operations on two four-bit binary numbers. 

6.2.11 Binary 
Multipliers 

In this chapter you have learned about binary arithmetic and the 
circuits required to perform binary arithmetic. You have learned 
about the half- and full-adders, binary multipliers, BCD adders, 
and ALUs as means of performing binary arithmetic. , These 
items form the backbone of digital arithmetic computation. 

6.3 SUMMARY 


1. What is the sum of 101 and 011 ? 6.4 REVIEW 
QUESTIONS 

2. Compute the difference between 011 and 010. 

3. What is meant'by a half-,idd~t? 
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4. Divide 111001 .by 10010. 

5. MultiplyJ01 by llO, . 

6. ConvertFF hexadecimal to binary. 

7. Convert FF hexadecimal to decimal. 

.. 8; .What is allALU ? 

I . ~. : 

9. . Write' -120 ' in the two's complement binary fonnat. 

10. Write -120 in the one's complement binary fonnat. 

11. What is the range of ' signed number in art eight-bit 
register using two's complement notation? 

12. Convert 120 to BCD. 
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